

UV 420 TTR-C H4

SAW flux, fluoride-basic type

_			e =	4.5	
	20	CI	-10	ati	An.
	as	-511		аш	OI I

EN ISO 14174 SA FB 1 65 DC H5

Characteristics and typical fields of application

UV 420 TTR-C H4 is an agglomerated fluoride-basic welding flux with high basicity.

It is characterized by its neutral metallurgical behaviour and has been designed mainly for multipass welding. The flux is applied in high strength applications in oil and gas industry that need PWHT at relative high temperatures (e.g. 630 – 710°C) for relative long duration (e.g. up to 26 hrs). Also suited for for weldments that will be exposed to a normalising heat treatment (N+A / Q

UV 420 TTR-C H4 has the special feature of a Carbon support. Depending on the Carbon content in the wire, it results in either a reduced loss or a small increase of Carbon.

Compared to UV 420 TTR the Carbon content in the weld metal is about 0.02 – 0.04% higher. UV 420 TTR-C H4 is similar to UV 420 TTR-C: Both fluxes have the same chemical composition, and both provide the same chemical composition and mechanical properties in the weld metal. The only difference of the H4-version is a lower amount of diffusible hydrogen in the weld metal.

Flux properties			
Grain size (EN ISO 14174)	3 – 20 (0.3 – 2.0 mm)		
Polarity	DC+		
Flux consumption	0.9 - 1.1 kg flux per kg wire		
Basicity (Boniszewski) wt%	3.4		
Basicity (Boniszewski) mole %	2.1		
Apparent density	1.0 kg/dm3		
Re-drying conditions	300 – 350°C (572-662°F), min 2 hrs		
Diffusible hydrogen (ISO 3690)	< 5 ml / 100gr (as produced / re-dried).		

Composition of sub-arc welding flux [weight %]				
SiO2+TiO2	CaO+MgO	Al2O3+MnO	CaF2	
15	35	21	26	

Typical wires to combine				
SAW wires	AWS	EN ISO		
Union S 3 NiMo 1	A5.23 : EF3	26304-A : S3Ni1Mo		
Union S Ni1MoCr	A5.23 : EG	26304-A: SZ3Ni0.9MoCr		
Union S 2 CrMo	A5.23 : EB2R	24598-A: S S CrMo1		

Packaging		
Туре	Weight [kg]	
Metal drum	30	
DRY SYSTEM	25 kg	